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EVALUATION OF ION DENSITY AND PLASMA POTENTIAL
FROM LANGMUIR PROBE DATA
by Roman Krawec

Lewis Research Center

SUMMARY

The collisionless probe theory of Laframboise is used to calculate values of probe
current for a plasma composed of electrons and ions with equal temperatures and
Maxwellian velocity distribution functions. Specifically, the value of probe current is
given as a function of ion density for a probe biased at a voltage 5kT/q below probe
floating potential, where k is Boltzmann's constant, T is temperature, and g is the
electron charge.

Calculations are performed for four values of probe diameter and cover the density
and temperature regions from 109 to 1014 cm'3 and 1 to 30 eV, respectively. Ion

masses from 1 to 4 are considered.

INTRODUCTION

Although the problem of ion collection by a cylindrical probe in a collisionless
plasma has been solved exactly by Laframboise (ref. 1), the manner in which the results
are presented is inconvenient for use by the experimenter. Attempts at simplifying the
data analysis have recently been made by Corbin and Oss (ref. 2) and by Battle and Bell
(ref. 3). Corbin and Oss compute complete probe current-voltage characteristics for a
low-density cesium plasma at three electron temperatures and for two different probes.
These calculations were performed for an extremely restricted range of parameters and
thus cannot be used by most experimenters. A further problem lies in the fact that any
attempt to plot complete current-voltage characteristics for a wide range of parameters
would lead to an undesirably large number of figures.

The work of Battle and Bell, on the other hand, is presented in the form of dimen-
sionless parameters for helium and argon. These are given as figures 2 and 3 of refer-
ence 3 and cover a wide region of ratios of probe radius to Debye length. However, their



work does not apply to a hydrogen plasma.
The results of Laframboise are presented in this report in a form which should be

useful to the experimenter. The data are presented in the form of probe current per
unit length as functions of ion density for cylindrical probes of various diameters biased
5kT/q below floating potential, where k is Boltzmann's constant, T is temperature,
and q is the electron charge. The choice of 5kT/q below floating potential is arbi-
trary; it was chosen to be sufficiently far from plasma potential so that the probe would
operate in a region where the electron current is negligible. The electron temperature
is assumed to be available from other probe measurements.

The ranges of plasma parameters covered are (1) electron temperature, 1 to 30 eV;
(2) ion number density, 109 to 1014 cm'3; (3) ion mass, 1 to 4; and (4) probe radius,
0.0127 to 0.0318 cm (radius from 0.005 to 0.0125 in. in steps of 0.0025 in. ).

Although the calculations were performed for a plasma with equal electron and ion
temperatures (Te = Ti)’ the use of the results for Ti = Te is justified by the weak de-

pendence of ion current on ion temperature.

RELATIONS USED IN THE CALCULATIONS

The total current to the probe is given (ref. 2) as

qv

Ip=Ie+]'i=-Iseexp<—l—{—'E>+Ii

- 27RLqng 5L W, B) - ‘/ﬁ exp(-¢) (SI units) (1a)
m

27M

where

Ip probe current

Ie electron current
Ii ion current
I saturation electron current

electron charge

q

A% probe potential measured with respect to plasma potential
k Boltzmann’s constant
T

temperature



R probe radius
L probe length
n ion number density
M ion mass
ratio of ion current at given probe potential to ion current at plasma
potential
Y(p, B) dimensionless ion current calculated by Laframboise
% dimensionless probe potential, qV/kT
B dimensionless probe radius, R/ A g
R probe radius
A4 Debye length
m electron mass

The probe current per unit length is

1/2
_IE - 3.91x10713 ﬁ'lr_z/_ [¢(¢, B) - 42.8 z1/2 exp(-qo)] (A/cm) (1b)
Z

where Z is the atomic number of the ion, and temperature is in eV, ion number density
is in cm'3, and probe radius and length are in cm. Values of Y(¢, B) are presented in
table I, which was taken from reference 2.

RESULTS AND DISCUSSION

The value of ¢ at which Ip equalled zero (eq. (1b)) was found for given values of
n, T, and Z by using an iteration procedure. (This is the probe floating potential, de-
noted by ¢ o') The value of probe currentat ¢ = ¢ o™ 5 was then calculated. Values
of Y(¢, B) for values of B other than those given in table I were extrapolated by fitting
a parabola through three points in the immediate vicinity of the desired value of B.

The Debye length is given as
T
A, = "T85 ¢f= cm
2= 155y
3

where the temperature is expressed in eV and the number density in em™.



The calculations are limited to values of n and T such that 1 =8 <50 in order
to stay within regions of validity of the theory. The limitations imposed on the density
for a given temperature by these restrictions are presented in figure 1. Figure 1(a)
presents the minimum densities for which the calculations are valid as a function of
probe radius and particle temperature, while figure 1(b) presents the maximum densi-
ties.

Figures 2 to 5 present the probe currents at ¢ = ¢ o™ 5 for various probe radii and
ion masses as functions of temperature and density.

With the solution of equation (1b) used for ¢ o’ the plasma potential can be obtained
in terms of the floating potential. Figure 6 gives the value of the dimensionless probe
floating potential for different plasma conditions. :

As an example of how the curves are to be used, assume an atomic hydrogen plasma
and the following: probe radius, 0.0254 cm; probe length, 0.1 cm; electron tempera-
ture, 8 eV; and probe floating potential, -20 V.,

The atomic hydrogen plasma (Z = 1) and the probe radius tell us that figure 2(c) is
the proper one to use, The first thing to do is to measure the probe current when the
probe is biased at -60 V (five times the electron temperature or 40 V below floating
potential).

If this probe current is 9 mA, the probe current per cm would then be 90 mA. Re-
ferring to figure 2(c), 90 mA at a temperature of 8 eV corresponds to a number density
of 1.35x10%2 cm™3,

Furthermore, figure 6(c) tells us that under these conditions the dimensionless
floating potential is near 3.1, which means that the plasma potential is 3. 1x8 above the
probe floating potential. The plasma potential in this case is thus 4.8 V.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, June 17, 1971,
129-02.
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TABLE I. - DIMENSIONLESS ION CURRENT FOR A CYLINDRICAL PROBE WHERE ION AND
ELECTRON TEMPERATURES ARE EQUAL AND BOTH SPECIES ARE MAXWELLIAN

[Data from ref, 2.]

Dimension- Dimensionless probe radius, 8
less probe
potential, 1 1.5 2 2.5 3 4 5 10 20 50
¢ Dimensionless ion current, y(¢, B)
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
.1 1.0804 | 1.0804 | 1.0804 |1.0804 | 1.0804 | 1.0804 | 1.0804 | 1.0803  1.0803 | 1.0803
.3 1.2101 {1.2101 ( 1.2101 11,2101} 1.2101| 1,2101 }1,2100 {1.208 | 1.205 | 1.198
.6 1.3721 {1.3721 | 1.3721 | 1.3721 | 1.3721 ] 1.3721 [ 1,371 |1.362 1.348 | 1.327
1.0 1.5560 | 1.5560 | 1.5560 | 1.5560 | 1.5560 | 1,554 | 1.549 | 1.523 1.486 | 1.439
1.5 1.7551 [ 1.7551 [ 1.7551 j1.7551 1,754 | 1.747 |1.735 |[1.677 | 1.605 {1,523
2.0 1.9320 | 1.9320 | 1.9320 j1.9320( 1.928 | 1.913 |1.893 |1.798 | 1.689 1.576
3.0 2.2417 | 2.2417 12,2417 [2,237 [2.226 | 2.192 |2.151 [1.98 1.801 | 1.638
5.0 2.7555 1 2.7555 [ 2.731 |2.731 | 2,701 | 2.626 |2.544 |2.22 1.940 | 1.703
7.5 3.2846 | 3.2846 | 3.266 |3.227 |3.174 | 3.050 [2.920 |2.442 | 2.060 | 1.756
10.0 3.7388 {3.7388|3.735 |3.703 | 3.645 | 3.567 |[3.402 |[3.231 | 2.622 | 1.798
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